Machine Learning A Guide to Current Research

edited by Tom M. Mitchell Jaime G. Carbonell Ryszard S. Michalski

MACHINE LEARNING

A Guide to Current Research

edited by

Tom M. Mitchell Rutgers University

Jaime G. Carbonell Carnegie-Mellon University

Ryszard S. Michalski University of Illinois

Table of Contents CONTRIBUTING AUTHORS

хi

PREFACE	xiii
JUDGE: A CASE-BASED REASONING SYSTEM William M. Bain	1
CHANGING LANGUAGE WHILE LEARNING RECURSIVE DESCRIPTIONS FROM EXAMPLES Ranan B. Banerji	5
CEARNING BY DISJUNCTIVE SPANNING Gary L. Bradshaw	11
RANSFER OF KNOWLEDGE BETWEEN TEACHING AND LEARNING SYSTEMS P. Brazdil	15
SOME APPROACHES TO KNOWLEDGE ACQUISITION Bruce G. Buchanan	19
ANALOGICAL LEARNING WITH MULTIPLE MODELS Mark H. Burstein	25
THE WORLD MODELERS PROJECT: OBJECTIVES AND SIMULATOR ARCHITECTURE Laime Carbonell and Greg Hood	29
THE ACQUISITION OF PROCEDURAL KNOWLEDGE THROUGH INDUCTIVE LEARNING	35
LEARNING STATIC EVALUATION FUNCTIONS BY LINEAR REGRESSION Jens Christensen	39
PLAN INVENTION AND PLAN TRANSFORMATION Gregg C. Collins	43
A BRIEF OVERVIEW OF EXPLANATORY SCHEMA ACQUISITION Gerald Dejong	47
THE EG PROJECT: RECENT PROGRESS Thomas G. Dietterich	51

LEARNING CAUSAL RELATIONS Richard J. Doyle	55
FUNCTIONAL PROPERTIES AND CONCEPT FORMATION J. Daniel Easterlin	59
EXPLANATION-BASED LEARNING IN LOGIC CIRCUIT DESIGN Thomas Ellman	63
A PROPOSED METHOD OF CONCEPTUAL CLUSTERING FOR STRUCTURED AND DECOMPOSABLE OBJECTS Douglas Fisher	67
EXPLOITING FUNCTIONAL VOCABULARIES TO LEARN STRUCTURAL DESCRIPTIONS Nicholas S. Flann and Thomas G. Dietterich	71
COMBINING NUMERIC AND SYMBOLIC LEARNING TECHNIQUES Richard H. Granger, Jr. and Jeffrey C. Schlimmer	75
LEARNING BY UNDERSTANDING ANALOGIES Russell Greiner	81
ANALOGICAL REASONING IN THE CONTEXT OF ACQUIRING PROBLEM SOLVING EXPERTISE Rogers Hall	85
PLANNING AND LEARNING IN A DESIGN DOMAIN: THE PROBLEMS PLAN INTERACTIONS Kristian J. Hammond	89
INFERENCE OF INCORRECT OPERATORS Haym Hirsh and Derek Sleeman	93
A CONCEPTUAL FRAMEWORK FOR CONCEPT IDENTIFICATION Robert C. Holte	99
NEURAL MODELING AS ONE APPROACH TO MACHINE LEARNING Greg Hood	103
STEPS TOWARD BUILDING A DYNAMIC MEMORY Larry Hunter	109

	LEARNING BY COMPOSITION Glenn A. Iba	115
	KNOWLEDGE ACQUISITION: INVESTIGATIONS AND GENERAL PRINCIPLES Gary S. Kahn	119
	PURPOSE-DIRECTED ANALOGY: A SUMMARY OF CURRENT RESEARCH Smadar Kedar-Cabelli	123
LS	DEVELOPMENT OF A FRAMEWORK FOR CONTEXTUAL CONCEPT LEARNING Richard M. Keller	127
	ON SAFELY IGNORING HYPOTHESES Kevin T. Kelly	133
	A MODEL OF ACQUIRING PROBLEM SOLVING EXPERTISE Dennis Kibler and Rogers P. Hall	137
I HO	ANOTHER LEARNING PROBLEM: SYMBOLIC PROCESS PREDICTION Heedong Ko	141
HEO	LEARNING AT LRI ORSAY Yves Kodratoff	145
BIOT	COPER: A METHODOLOGY FOR LEARNING INVARIANT FUNCTIONAL DESCRIPTIONS Mieczyslaw M. Kokar	151
<u>m</u>	USING EXPERIENCE AS A GUIDE FOR PROBLEM SOLVING Janet L. Kolodner and Robert L. Simpson	155
	HEURISTICS AS INVARIANTS AND ITS APPLICATION TO LEARNING Richard E. Korf	161
	COMPONENTS OF LEARNING IN A REACTIVE ENVIRONMENT Pat Langley, Dennis Kibler, and Richard Granger	167
	THE DEVELOPMENT OF STRUCTURES THROUGH INTERACTION Robert W. Lawler	173

COMPLEX LEARNING ENVIRONMENTS: HIERARCHIES AND THE USE OF EXPLANATION Michael Lebowitz	179
PREDICTION AND CONTROL IN AN ACTIVE ENVIRONMENT Alan J. MacDonald	183
BETTER INFORMATION RETRIEVAL THROUGH LINGUISTIC SOPHISTICATION Michael L. Mauldin	189
MACHINE LEARNING RESEARCH IN THE ARTIFICIAL INTELLIGENCE LABORATORY AT ILLINOIS Ryszard S. Michalski	193
OVERVIEW OF THE PRODIGY LEARNING APPRENTICE Steven Minton	199
A LEARNING APPRENTICE SYSTEM FOR VLSI DESIGN Tom M. Mitchell, Sridhar Mahadevan, and Louis I. Steinberg	203
GENERALIZING EXPLANATIONS OF NARRATIVES INTO SCHEMATA Raymond J. Mooney	207
WHY ARE DESIGN DERIVATIONS HARD TO REPLAY? Jack Mostow	213
AN ARCHITECTURE FOR EXPERIENTIAL LEARNING Michael C. Mozer, Klaus P. Gross	219
KNOWLEDGE EXTRACTION THROUGH LEARNING FROM EXAMPLES Igor Mozetic	227
LEARNING CONCEPTS WITH A PROTOTYPE-BASED MODEL FOR CONCEPT REPRESENTATION Donna J. Nagel	233
RECENT PROGRESS ON THE MATHEMATICIAN'S APPRENTICE PROJECT Paul O'Rorke	237
ACQUIRING DOMAIN KNOWLEDGE FROM FRAGMENTS OF ADVICE Bruce W. Porter, Ray Bareiss, and Adam Farquhar	241

CALM: CONTESTATION FOR ARGUMENTATIVE LEARNING MACHINE J. Quinqueton and J. Sallantin	247
DIRECTED EXPERIMENTATION FOR THEORY REVISION AND CONCEPTUAL KNOWLEDGE ACQUISITION Shankar A. Rajamoney	255
GOAL-FREE LEARNING BY ANALOGY Alain Rappaport	261
A SCIENTIFIC APPROACH TO PRACTICAL INDUCTION Larry Rendell	269
EXPLORING SHIFTS OF REPRESENTATION Patricia J. Riddle	275
CURRENT RESEARCH ON LEARNING IN SOAR Paul S. Rosenbloom, John E. Laird, Allen Newell, Andrew Golding, and Amy Unruh	281
LEARNING CONCEPTS IN A COMPLEX ROBOT WORLD Claude Sammut and David Hume	291
LEARNING EVALUATION FUNCTIONS Patricia A. Schooley	295
LEARNING FROM DATA WITH ERRORS Jakub Segen	299
EXPLANATION-BASED MANIPULATOR LEARNING Alberto Maria Segre	303
LEARNING CLASSICAL PHYSICS Jude W. Shavlik	307
VIEWS AND CAUSALITY IN DISCOVERY: MODELLING HUMAN INDUCTION Jeff Shrager	311
LEARNING CONTROL INFORMATION Bernard Silver	317
AN INVESTIGATION OF THE NATURE OF MATHEMATICAL DISCOVERY Michael H. Sims	321

LEARNING HOW TO REACH A GOAL: A STRATEGY FOR THE MULTIPLE CLASSES CLASSIFICATION PROBLEM Henri Soldano and Hélène Pigot	327
CONCEPTUAL CLUSTERING OF STRUCTURED OBJECTS R. E. Stepp	333
LEARNING IN INTRACTABLE DOMAINS Prasad V. Tadepalli	337
ON COMPILING EXPLAINABLE MODELS OF A DESIGN DOMAIN Christopher Tong	343
WHAT CAN BE LEARNED? L.G. Valiant	349
LEARNING HEURISTIC RULES FROM DEEP REASONING Walter Van De Velde	353
LEARNING A DOMAIN THEORY BY COMPLETING EXPLANATIONS Kurt VanLehn	359
LEARNING IMPLEMENTATION RULES WITH OPERATING- CONDITIONS DEPENDING ON INTERNAL STRUCTURES IN VLSI DESIGN Masanobu Watanabe	363
OVERVIEW OF THE ODYSSEUS LEARNING APPRENTICE David C. Wilkins, William J. Clancey, and Bruce G. Buchanan	369
LEARNING FROM EXCEPTIONS IN DATABASES Keith E. Williamson	375
LEARNING APPRENTICE SYSTEMS RESEARCH AT SCHLUMBERGER Howard Winston, Reid Smith, Michael Kleyn, Tom Mitchell, and Bruce Buchanan	379
LANGUAGE ACQUISITION: LEARNING PHRASES IN CONTEXT Uri Zernik and Michael Dyer	385
REFERENCES	391
INDEX	425