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In our work, we are always between Scylla and Charybdis;
we may fail to abstract enough, and miss important physics,
or we may abstract too much and end up with fictitious
objects in our models turning into real monsters that devour
us.

Murray Gell-Mann (Nobel Prize in Physics in 1969)

My goals for this edition remain the same. I would like this book to be a basis for a
one-semester undergraduate course in applied algebra. I want it to be mathemati-
cally rigorous and self-contained, and at the same time to provide a glimpse into the
exciting world of applications. The challenge for such a course is to avoid getting
overexcited about proving theorems and, on the other hand, not to get bogged down
with technical details of the applications. This is a delicate balance, and it is up to
the reader to decide how well I managed to steer the exposition between these
Scylla and Charybdis.

Apart from correcting misprints and improving the order of exercises I added
several small but significant sections that provide links between chapters and make
the whole construction of the course more connected. The most notable additions
are:

e The chapter on secret sharing (Chap. 6) has now an application to cryptography
proper (Chap. 2). By using secret sharing we show how a cryptosystem like
RSA can be used by an organisation to share the decryption key between
members of that organisation.

e The chapter on polynomials (Chap. 5) was extended by a new section on per-
mutation polynomials which relates this chapter to Chaps. 2 and 3.

e The chapter on compression of information (Chap. 8) was a bit one-sided since
it was dealing with encoding of an unknown source but not a known one. The
reason was that encoding of an unknown source (universal encoding) has not
been adequately reflected in the undergraduate literature while encoding a
known source (famous Huffman’s codes) was everywhere. However, for the
purpose of this book to be self-contained, I wrote a section about Huffman’s
codes, adding it to Chap. 8.
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viii Preface to the Second Edition

I also added a number of exercises. Since in the first edition of this book all
exercises had solutions (and they still have), I decided to add new exercises (with a
few exceptions) without solutions. Those without solutions are marked with a small
circle. I also added an index to the book.

Enjoy the book!

Auckland, New Zealand Arkadii Slinko
February 2020



The aim of a Lecturer should be, not to gratify his vanity by a
shew of originality; but to explain, to arrange, and to digest
with clearness, what is already known in the science...

George Pryme (1781-1868)

This book originated from my lecture notes for the one-semester course which I
have given many times in The University of Auckland since 1998. The goal of this
book is to show the incredible power of algebra and number theory in the real
world. It does not advance far in theoretical algebra, theoretical number theory or
combinatorics. Instead, we concentrate on concrete objects like groups of points on
elliptic curves, polynomial rings and finite fields, study their elementary properties
and show their exceptional applicability to various problems in information han-
dling. Among the applications are cryptography, secret sharing, error-correcting,
fingerprinting and compression of information.

Some chapters of this book—and especially number-theoretic and cryptographic
ones—use GAP for illustrations of the main ideas. GAP is a system for compu-
tational discrete algebra, which provides a programming language, a library of
thousands of functions implementing algebraic algorithms, written in the GAP
language, as well as large data libraries of algebraic objects.

If you are using this book for self-study, then, studying a certain topic, famil-
iarise yourself with the corresponding section of Appendix A, where you will find
detailed instructions how to use GAP for this particular topic. As GAP will be
useful for most topics, it is not a good idea to skip it completely.

I owe a lot to Robin Christian who in 2006 helped me to introduce GAP to my
course and proofread the lecture notes. The introduction of GAP has been the
biggest single improvement to this course. The initial version of the GAP notes,
which have now been developed into Appendix A, was written by Robin. Stefan
Kohl, with the assistance of Eamonn O’Brien, kindly provided us with two pro-
grams for GAP that allowed us to calculate in groups of points on elliptic curves.
I am grateful to Paul Hafner, Primoz Poto¢nic, Jamie Sneddon and especially to
Steven Galbraith who in various years were members of the teaching team for this
course and suggested valuable improvements or contributed exercises.



X Preface to the First Edition

Many thanks go to Shaun White who did a very thorough job proofreading part
of the text in 2008 and to Steven Galbraith who improved the section of cryp-
tography in 2009 and commented on the section of compression. However, I bear
the sole responsibility for all mistakes and misprints in this book. I would be most
obliged if you report any noticed mistakes and misprints to me.

I hope you will enjoy this book as much as I enjoyed writing it.

Auckland Arkadii Slinko
March 2015
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