Vladimir Kovalevsky

# Image Processing with Cellular Topology



# Image Processing with Cellular Topology

# Vladimir Kovalevsky

# Image Processing with Cellular Topology



Vladimir Kovalevsky Computer Science Department University of Applied Sciences Berlin Berlin, Germany

ISBN 978-981-16-5771-9 ISBN 978-981-16-5772-6 (eBook) https://doi.org/10.1007/978-981-16-5772-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

### **Abstract**

The book explains why the definition of the boundary by means of the 4- and 8-neighborhood is wrong and suggests the use of the classical topological definition of the boundary while the digital image should be considered as an abstract cell complex. This approach has great significance in digital image processing. It allows a topological justification of many terms used in image processing. However, what is more important from the practical point of view is that we show how to work with cell complexes without the need of a large additional memory. We also suggest a graphical representation of boundaries in a cell complex. Three algorithms for tracing and encoding boundaries in binary, indexed, or color images are described. The code is free of loss of information so that the image can be exactly reconstructed from the code. The book also describes the theory of digital straight segments and an algorithm for dissolving a digital curve in digital straight segments. Another approach for dissolving digital curves into line segment is the polygonal approximation which is also presented in the book. The book considers different approaches to the detection of edges and suggests a new efficient method of edge detection usable for two- and three-dimensional images. Methods of efficiently encoding edges are suggested. Also, boundaries of subsets in a 3D space called surfaces are considered. Algorithms for efficiently encoding surfaces and for reconstructing 3D sets from the codes of all surfaces contained in this set are suggested. In the last chapter, the author suggests discussing the use of the classical definition of the derivative as the limit of the relation of the increment of the function divided by the increment of the argument while the latter tends to zero. This definition cannot be used for estimations of derivatives of non-analytical functions because it becomes wrong at small increments of the argument. Suggested is a useful method using an optimal value of the increment.

## **Contents**

| 1 | Introduction                                                  |          |                                                         |    |  |  |
|---|---------------------------------------------------------------|----------|---------------------------------------------------------|----|--|--|
|   | Refe                                                          | erences. |                                                         | 6  |  |  |
| 2 | <b>Boundary Presentation Using Abstract Cell Complexes</b>    |          |                                                         |    |  |  |
|   | 2.1                                                           | Abstra   | act Cell Complexes                                      | 8  |  |  |
|   | 2.2                                                           | Coord    | inates of Cells                                         | 12 |  |  |
|   | 2.3                                                           | Bound    | laries in Cell Complexes                                | 14 |  |  |
|   | 2.4                                                           | Graph    | ical Presentation of Boundaries                         | 15 |  |  |
|   | Refe                                                          | erences. |                                                         | 16 |  |  |
| 3 | <b>Boundary Tracing in Binary Images Using Cell Complexes</b> |          |                                                         |    |  |  |
|   | 3.1                                                           |          | ithm "EncodeBin"                                        | 22 |  |  |
|   | Refe                                                          |          |                                                         | 27 |  |  |
| 4 | Boundary Tracing and Encoding in Color Images                 |          |                                                         |    |  |  |
|   | 4.1                                                           | Rules    | of the Choice of the Direction of the Next Step         | 30 |  |  |
|   | 4.2                                                           | Encod    | ing Boundaries with the CORB Algorithm                  | 31 |  |  |
|   |                                                               | 4.2.1    | Properties of the Loops                                 | 37 |  |  |
|   |                                                               | 4.2.2    | The Sub-Algorithm "MakeTree"                            | 38 |  |  |
|   |                                                               | 4.2.3    | The Sub-Algorithm "Restore"                             | 42 |  |  |
|   |                                                               | 4.2.4    | Tracing Equations of Curves                             | 45 |  |  |
|   | 4.3                                                           | Encod    | ing Boundaries with the Algorithm "MakeLineList"        | 46 |  |  |
|   |                                                               | 4.3.1    | Restoration of Encoded Images                           | 56 |  |  |
|   | Refe                                                          | erences. |                                                         | 59 |  |  |
| 5 | Boundary Polygonization                                       |          |                                                         |    |  |  |
|   | 5.1                                                           | Encod    | ing Boundaries by Digital Straight Segments             | 61 |  |  |
|   |                                                               | 5.1.1    | Digital Straight Segments                               | 63 |  |  |
|   |                                                               | 5.1.2    | Properties of Digital Straight Segments                 | 64 |  |  |
|   |                                                               | 5.1.3    | Recognition of a DSS During the Tracing                 | 72 |  |  |
|   |                                                               | 5.1.4    | Algorithms for Subdividing a Line into Digital Straight |    |  |  |
|   |                                                               |          | Segments                                                | 74 |  |  |

viii Contents

|   |        | 5.1.5     | Inequalities for Cracks and Points of a DSS           |     |
|---|--------|-----------|-------------------------------------------------------|-----|
|   |        |           | in Combinatorial Coordinates                          | 81  |
|   | 5.2    | Metho     | od of Additional Integer Parameters of DSS            | 83  |
|   |        | 5.2.1     | Algorithm for Calculating the Additional Parameters   | 85  |
|   |        | 5.2.2     | Algorithm for Encoding the Additional Parameters      | 87  |
|   |        | 5.2.3     | Applications of DSS with Additional Parameters        | 88  |
|   | 5.3    | Estima    | ating the Length of Digital Curves                    | 90  |
|   | 5.4    | Polygo    | onal Approximation                                    | 91  |
|   |        | 5.4.1     | The Sector Method                                     | 91  |
|   |        | 5.4.2     | Improvement of the Sector Method                      | 93  |
|   |        | 5.4.3     | Applications of Polygonal Approximation               | 99  |
|   |        | 5.4.4     | Algorithm for Recognizing Circles in Distorted Images | 102 |
|   |        | 5.4.5     | Recognition of Ellipses in Distorted Images           | 106 |
|   |        | 5.4.6     | Mathematical Foundation of Ellipse Recognition        | 106 |
|   |        | 5.4.7     | Algorithm of Recognizing an Ellipse                   | 108 |
|   | Refe   | rences .  |                                                       | 111 |
| _ | Eda    | o Dotoo   | tion in 2D Images                                     | 113 |
| 6 | _      |           | etion in 2D Images                                    | 113 |
|   | 6.1    |           | tant Preprocessing                                    | 113 |
|   |        | 6.1.1     | Sigma Filter: The Most Efficient One                  | 121 |
|   | 6.2    | 6.1.2     | Extreme Value Filter                                  | 121 |
|   | 6.2    |           | New Method of Edge Detection                          | 131 |
|   | 0.3    |           | cations of Edge Detection                             | 131 |
|   |        | 6.3.1     | Image Compression by Means of Edge Detection          |     |
|   |        | 6.3.2     | Recognition of Circular Objects                       | 134 |
|   | D . C. | 6.3.3     | Recognition of Bicycles in Street Images              | 135 |
|   | Kele   | rences.   |                                                       | 137 |
| 7 | Surf   |           | aversing and Encoding in 3D Images                    | 139 |
|   | 7.1    | Algori    | ithm "Spiral Tracing"                                 | 141 |
|   |        | 7.1.1     | The Idea of the Spiral Tracing                        | 141 |
|   |        | 7.1.2     | The Reversible Tracing                                | 145 |
|   |        | 7.1.3     | Computer Experiments                                  | 148 |
|   |        | 7.1.4     | Efficiency of Encoding                                | 148 |
|   |        | 7.1.5     | Examples of Codes                                     | 149 |
|   |        | 7.1.6     | Conclusion                                            | 150 |
|   | 7.2    | Algori    | ithm CORB_3D for Traversing and Encoding Surfaces     | 150 |
|   |        | 7.2.1     | Properties of the Bubbles                             | 159 |
|   | 7.3    | Theor     | y of Digital Plane Patches                            | 161 |
|   |        | 7.3.1     | Properties of Digital Plane Patches                   | 162 |
|   |        | 7.3.2     | The Problem of the Segmentation of Surfaces into      |     |
|   |        |           | DPPs                                                  | 166 |
|   |        | 7.3.3     | The Partial Problem of the Recognition of a DPP       | 167 |
|   |        | 7.3.4     | The Partial Problem of the "Choice"                   | 169 |
|   | Refe   | erences . |                                                       | 169 |

Contents ix

| 8 | Edge Detection in 3D Images |                                               |     |  |  |  |  |
|---|-----------------------------|-----------------------------------------------|-----|--|--|--|--|
|   | 8.1                         | Preprocessing of 3D Images                    |     |  |  |  |  |
|   |                             | 8.1.1 Algorithm Sigma3D                       | 172 |  |  |  |  |
|   |                             | 8.1.2 Algorithm Extrem3D                      | 173 |  |  |  |  |
|   | 8.2                         | Algorithm Edge3D                              | 175 |  |  |  |  |
| 9 | Discussion                  |                                               |     |  |  |  |  |
|   | 9.1                         | Optimal Increment for Calculating Derivatives | 179 |  |  |  |  |
|   | 9.2                         | Conclusion                                    | 184 |  |  |  |  |
|   | Refe                        | erence                                        | 184 |  |  |  |  |