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Preface

This book is concerned with the arithmetic of integers, i.e. with the behaviour of
(usually positive) integers with respect to addition and multiplication. One major
way to describe this is through the study of arithmetical functions. Such functions
often behave in a locally erratic but globally predictable way. For example, their
mean value up to n is generally close to some simple function of n. It is this feature
of global regularity that allows one to study their behaviour using methods from
analytic number theory.

The goal of this book is to teach the readers how to establish such results. Since
we encourage an active attitude with a focus on methods rather than performance,
we have included nearly 300 exercises that guide the readers towards proving
results. These in themselves may not be the best available, but some exercises in
the later chapters ask the readers to prove results that are close to the forefront of
current research.

As mentioned above, the typical behaviour of an arithmetical function is
irregular, especially when its definition depends on the factorization structure of n.
Consider for instance the function

fom =TI -2). (0.1)

pln

The introduction of some notation is called for. Here, and in the whole book, the
letter p (or p;, p,, etc.) stands for a prime number, while the notation “p|n” means
that we are considering the set of primes p that divide n. For n = 1,2,...,54, we
find the following values of f(n):

,5,0,1,0,9,0,11,0,3,0,15,0,17,0,5,0,21,0,3,0, 1,0, 27,
15,0,35,0,11,0,39,0,41,0,3,0,45,0,5,0, 15,0,51,0

This list does not give us much information (other than f(n) vanishes when n is
even), but we shall show that its average (mean value) behaves in a regular way.
The book in itself is split in five parts that we now describe briefly.
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Approach.

Before embarking on computing average orders, we spend some time exploring
arithmetic functions and notions of arithmetical interest. Multiplicativity is a
fundamental notion there, and we develop a calculus on multiplicative functions
that renders their handling very easy. The basics on Dirichlet series is then
introduced and rough estimates concerning the growth of multiplicative functions
are proved. Additional chapters on the Legendre symbol and its Dirichlet series;
formulas akin to the Mdbius inversion formula (some of which are new!) conclude
the introductory part.

The Convolution Walk.

The first guided walk to higher ground exposes the readers to ‘“elementary”
methods, the focus of which is to prove the next theorem.

Theorem &/
For all real positive x we have
1
- Z fon) = $6px +0*(3.5x3),
n<x

where %) is a constant given by

3
%o = 1- =0.29261 98570 45154 91401 - - - 0.2
) 11_[2( " 1)) 02)

Here and in the sequel, we write f = O(g) as a shorthand for there being a positive
constant C such that |[f| < Cg. This is the Landau big-O notation that is standard in
mathematics. We supplement it with the notation O*; we say f = O*(g) if |f| <g.
This notation is very practical when one wants to compute explicit bounds for the
intermediary error terms.

The above theorem shows that, by taking into account many values of f, the
influence of the aberrant ones is swept under the rug and a simple regularity is
brought to the fore. This theorem is proved by comparing the function f, to a
simpler one (here n+— n) that is easier to analyse.

This first walk is based on the relatively simple nature of f,,. The convolution
method is folklore (though only a few systematic expositions are available, e.g.
[2]). It is very flexible and allows one to obtain excellent error terms. We present
several examples on how to use it. A similar philosophy is at work when one wants
to compute Euler products (such as the product in (0.2)) and Euler sums and we
dedicate a full chapter to this issue. We conclude this part with the Dirichlet
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hyperbola formula, as it is the second tool at our disposal to compute average
orders elementarily.

The Levin—Fainleib Walk.

The general idea of this second walk is to deduce the evaluation of mean values of
multiplicative functions from the behaviour of our function on prime powers. We
give in particular a completely explicit version of the Levin—Fainleib Theorem.
Here is the consequence that we have in store.

Theorem 4

When x > exp(20 000) and d(n) is the number of divisors of n, we have

D _V‘i(”) = %1 (log x)V2(1 + 020000/ log x))
n<x \/E
1 W+l 1
where € = — {(1 —)(1 — —) } . 0.3
! (1 +v2) IDQ +;] p” P )

Getting an accurate value of % is a challenge, we leave to the readers. In effect,
this method transfers regularity of the function on the primes to regularity on the
integers. But to be able to apply it, we need to detect the regularity on the primes!
We devote two chapters to this question and prove several classical estimates
of the sort concerning logarithmic averages. For instance, >, (logp)/p is shown
to be asymptotic to log x. We also prove a similar estimate when p is restricted to a
congruence class modulo 3 or 4, but we are not able at this level to dispense of the
logarithmic average and to prove, for instance, the Prime Number Theorem, i.e.
that Zp < logp is asymptotic to x. We are thus unable to provide an asymptotic for

> <x\/d(n). We however have enough material to compute some Euler products
and sums where the prime is restricted to a congruence class modulo 3 or 4; a
chapter is dedicated to this task. We conclude this part with an application of our
accumulated expertise and prove an asymptotic for Y., _ d(n*+1).

The Mellin Walk.

The third walk goes through analytical landscape where the information on our
function is taken from its Dirichlet series. One feature is that we introduce a
regular weight function F(f) and consider expressions of the form
Y n>1fo(m)F(n/x). As the sum now involves every natural integers, it captures
some aspect of the global behaviour of f,, provided, of course, that F(¢) is suf-
ficiently smooth and tends quickly enough to zero as ¢ tends to infinity in order for
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the sum to represent a well-defined function of x. Theorem % is a typical example
of a result involving a weight function.

Theorem ¢

Let x be real and positive. We have

D fome™* = Gox? + 07 (133 - X714,

n>1

where % is the constant defined in (0.2).

As a matter of fact, one can infer the asymptotic given in Theorem A from this
result, and this is the theme developed in Chap. 22.

Mellin transforms are also a powerful tool to prove the Prime Number
Theorem, and we finally achieve this in Chap. 23. We do so in a completely
explicit manner in the form of an inequality satisfied by the summatory function
of the Mobius function.

Higher Ground.

In the final part, we introduce extensions and applications based on the classical
techniques that were gently introduced and commented on in the earlier parts
of the book. Non-negative multiplicative functions were our main focus in the first
four parts. In the final part, we consider mean values of some oscillating multi-
plicative functions, and in particular, we give an explicit bound for
Y on<it(n)/o(n). We also present Pr-numbers (numbers having at most k, not
necessarily distinct, prime factors) and delve deeply enough into the theory of the
Brun sieve to prove a fundamental lemma, i.e. a wide-ranging but rather sharp
upper bound for the quantities considered in sieve, as the number of primes in an
interval for instance. This will enable us to evaluate the two exponential sums
>y <.€xp(2inpp) and 3, _ u(n)exp(2inpn) with modern techniques and to
prove, for instance, that the two sequences (cosanp), when p ranges, over the
primes and (cos2zpn), when n ranges over the integers having an even number of
prime factors, are dense in [—1,1]. We will end this journey with a short pre-
sentation of the large sieve and of a practical arithmetical form of it due to H.L.
Montgomery.
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An Active Teaching.

Since we aim at keeping the readers on their toes, and since we shall also
explicitly bound most of the intermediary error terms, we have decided to give this
monograph an algorithmical streak. This will help the readers in carrying out
experiments. Computation is a way to get better mastery and insights into the
mathematical topic one studies. B. Riemann, one of the greatest mathematicians of
all time, had extremely large sheets of paper, on which he performed computa-
tions. For example, he computed by hand the location of the first few zeros of the
Riemann zeta-function. Study of these sheets has shown that Riemann kept many
findings up his sleeve, the formula now known under the name “Riemann-Siegel
formula” being an example. Riemann developed it in order to have a faster and
more accurate way of computing the Riemann zeta-function in the critical
strip. Another brilliant mathematician known for carrying out many numerical
calculations was C.F. Gauss. He became famous in 1802 for predicting the position
of the planet-like object Ceres. The prediction required Gauss to do an enormous
amount of calculation and its purpose was to help astronomers find Ceres again in
the sky after it had been too close to the sun’s glare for months to confirm the first
observations by Piazzi in 1801.

Pari/GP [6] and Sage [8] are the two computer algebra packages that we shall
use, in version 2.11 at the time of writing for Pari/GP and in version 9 (with
Python 3) for Sage. They are freewares and developed by a dedicated community
that guarantees the accuracy of the results. Numerical precision is always an issue
and we do not dwell on it here, but the readers are expected to document them-
selves on this issue if they want to obtain trustworthy results. Furthermore, in Sage,
we have interval arithmetic at our disposal: results are expressed as a couple (£,
E™) representing an (unknown) real number E in the interval [E~,E™]. Let us
elaborate a bit on this issue here. The script

R = RealIntervalField(64)
sqrt(R(2))

sqrt(R(2)) .upper()
sqrt(R(2)) .1lower()

answers successively 1.41421356237309504887 with the last digit 8 being maybe
wrong: the ?-sign means that it may be 7 or 9, then 1.41421356237309505 fol-
lowed by 1.41421356237309504 where this time, all the digits are correct: the
inequalities

1.41421356237309504 < v/2 < 1.41421356237309505



X Preface

are certified. A word is surely required on the Sage syntax: sgqrt (R(2)) is an
object that contain several fields: here we have an upper bound and a lower bound;
to have access to these fields, we have accessory functions at our disposal, here
upper () and lower () that come as further specification, which explains the
syntax sgrt (R(2)) .upper (). Pari/GP sometimes also uses this syntax.

Neither Pari/GP nor Sage are extremely fast and for specific purposes it is better
to use some C-code directly; Pari/GP has the advantage that one may automati-
cally derive some more efficient C-code from most Pari/GP scripts by using the
free software gp2c. Furthermore, the ease of usage of both packages compensates
for the relative loss of speed.

Notation.
We end this introduction by commenting on our notation.

e It is common in multiplicative number theory to write -, f(p) in the case
that the variable p is restricted to prime values. The same applies to more
intricate expressions and to products as well (cf. our definition (0.1) of f;)). As a
rule of thumb, a variable named p is assumed to be prime unless specified
otherwise.

e We shall often need to refer to the gcd (“greatest common divisor”) of two
integers, say a and b. The notation ged(a, b) is explicit, but is often shortened to
(a,b). The readers may thus find expressions like f((a,b)) referring to the
value of the function f on the gcd of a and b, or an q,(n,q):ll to denote the
number of integers below ¢ that are coprime with ¢ (and this number is exactly
the value of the Euler ¢-function at g).

e Although we try to be very precise, we sometimes prefer to loosen our
methodological constraints and use O rather than O*. We shall also use the
expression f < g to mean that f = O(g). When we add subscripts, like in
f<,g, it means that there exists a constant C that may depend on r such that

Ifl<C-g.
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Further Reading

Different and complementary approaches to arithmetic can be found in several
textbooks that can be read without too much prerequisite. Let us mention the clas-
sical [1] of T. Apostol, the book [9] of W. Schwarz and J. Spilker dedicated to
arithmetical functions, and the more advanced book [5] by H.L. Montgomery and
R.C. Vaughan. Other rich sources of information are the books [7] by P. Pollack
and [3] by O. Bordelles. A major reference on mathematical computations with Sage
is the open access book [4], written and maintained up-to-date by a community
of researchers. Finally, we direct the reader to the collection of exercices [10] by
W. Sierpinski.

Marseille, France Olivier Ramaré
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Using this Book for a Course

This chapter is meant for teachers who wish to use
(all or part of) this book for a course.

This book may be used from Chaps. 1 to 29 linearly; this gives a long course
requiring about 100-120 hours, though it naturally depends on the familiarity
of the students with arithmetical notions.

It may also be used for 36-hour courses, which is how these lessons came to be.
To build such a course, the Multiplicativity part is unavoidable and, in my
experience, should always be at least recalled. The unitary convolution may be
skipped for beginners but is useful to let the more advanced students acquire a new
notion.

Once this basic core is over, one may divert to the two light chapters on Mébius
Inversions and on Dirichlet Hyperbola Principle, depending on how much time is
available; these chapters may also be kept for term papers.

From there onwards, there are three possibilities: using the Convolution
Method, applying the Levin—Fainleib method, or invoking the Mellin Transform.
Some hours should be reserved at the end to delve into one of the last chapters that
are grouped in four blocks: the Selberg Formula is one, using the Convolution
Method with non-positive multiplicative functions is the second one and the two
heavier ones concerns respectively Rankin’s trick, Brun’s sieve and some arith-
metical exponential sums, and the Montgomery’s arithmetical version of the large
sieve. These last lectures will be challenging, all the more so since the students will
have less time to acquire the material, but the results therein may be presented at
the beginning as the goal of the course. This is how the author has gone about it
several times, with his choice of core blocks being

e  Multiplicativity, followed by the main course of the Convolution Walk and the
chapter on Convolution and Non-negative functions. This gives a light course
that can be spiced with some addenda.

Xiii



Xiv Using this Book for a Course

e  Multiplicativity, followed by the main course of the Levin—Fainleib Walk and
closing with Rankin and exponential sums. This gives a rather strong series on
combinatorial methods, showing a path to good results without using the Prime
Number Theorem.

e Multiplicativity, followed by the main course of the Mellin Walk and ending
with the Large sieve/Montgomery’s sieve. This gives a more traditional course.

We have tried to represent this architecture in the diagram displayed next page.
The core block of Multiplicativity is in yellow, the main chapters for each of the
three ways are displayed below in green, while the more advanced topics at the
bottom of the diagram are being displayed in blue.

Once such a path is chosen, it is possible to dress them with additional material,
all displayed in pink. We have ordered them in a way suitable for a full course but
there is a large margin of freedom there. It is interesting in the Levin—Fainleib
Walk to add information on the distribution of primes in arithmetic progressions,
as this extends sizeably the power of this theorem.

Of special interest are the units concerning scientific computations; these are
Chaps. 9, 16 and 17. They use the arithmetical background and fit there, but have a
different flavour. The arithmetical prerequisite are rather modest, only the fol-
lowing basic definitions are needed: the Euler product representation of the
Riemann zeta-function is essential, and later the one concerning Dirichlet series,
and finally, the property saying that the Mobius function is the convolution inverse
of the constant function 1.

The level of difficulty increases from the top to the bottom of the diagram with
the chapters not directly depending on their predecessors in the diagram.

To maintain a proper level of independence, some material and often the def-
initions are retold. We have also tried to be as extensive as we could with
cross-references, so that a reader skipping some chapters may still be able to
follow.
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