Leonid Karlinsky Tomer Michaeli Ko Nishino (Eds.)

Computer Vision – ECCV 2022 Workshops

Tel Aviv, Israel, October 23–27, 2022 Proceedings, Part VII

Lecture Notes in Computer Science

13807

Founding Editors

Gerhard Goos

Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis

Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino

Purdue University, West Lafayette, IN, USA

Wen Gao

Peking University, Beijing, China

Bernhard Steffen

TU Dortmund University, Dortmund, Germany

Moti Yung

Columbia University, New York, NY, USA

More information about this series at https://link.springer.com/bookseries/558

Leonid Karlinsky · Tomer Michaeli · Ko Nishino (Eds.)

Computer Vision – ECCV 2022 Workshops

Tel Aviv, Israel, October 23–27, 2022 Proceedings, Part VII

Editors
Leonid Karlinsky
IBM Research - MIT-IBM Watson AI Lab
Massachusetts, USA

Ko Nishino Kyoto University Kyoto, Japan

Tomer Michaeli Technion – Israel Institute of Technology Haifa. Israel

ISSN 0302-9743 ISSN 1611-3349 (electronic) Lecture Notes in Computer Science ISBN 978-3-031-25081-1 ISBN 978-3-031-25082-8 (eBook) https://doi.org/10.1007/978-3-031-25082-8

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Foreword

Organizing the European Conference on Computer Vision (ECCV 2022) in Tel-Aviv during a global pandemic was no easy feat. The uncertainty level was extremely high, and decisions had to be postponed to the last minute. Still, we managed to plan things just in time for ECCV 2022 to be held in person. Participation in physical events is crucial to stimulating collaborations and nurturing the culture of the Computer Vision community.

There were many people who worked hard to ensure attendees enjoyed the best science at the 17th edition of ECCV. We are grateful to the Program Chairs Gabriel Brostow and Tal Hassner, who went above and beyond to ensure the ECCV reviewing process ran smoothly. The scientific program included dozens of workshops and tutorials in addition to the main conference and we would like to thank Leonid Karlinsky and Tomer Michaeli for their hard work. Finally, special thanks to the web chairs Lorenzo Baraldi and Kosta Derpanis, who put in extra hours to transfer information fast and efficiently to the ECCV community.

We would like to express gratitude to our generous sponsors and the Industry Chairs Dimosthenis Karatzas and Chen Sagiv, who oversaw industry relations and proposed new ways for academia-industry collaboration and technology transfer. It's great to see so much industrial interest in what we're doing!

Authors' draft versions of the papers appeared online with open access on both the Computer Vision Foundation (CVF) and the European Computer Vision Association (ECVA) websites as with previous ECCVs. Springer, the publisher of the proceedings, has arranged for archival publication. The final version of the papers is hosted by SpringerLink, with active references and supplementary materials. It benefits all potential readers that we offer both a free and citeable version for all researchers, as well as an authoritative, citeable version for SpringerLink readers. Our thanks go to Ronan Nugent from Springer, who helped us negotiate this agreement. Last but not least, we wish to thank Eric Mortensen, our publication chair, whose expertise made the process smooth.

October 2022

Rita Cucchiara Jiří Matas Amnon Shashua Lihi Zelnik-Manor

Preface

Welcome to the workshop proceedings of the 17th European Conference on Computer Vision (ECCV 2022). This year, the main ECCV event was accompanied by 60 workshops, scheduled between October 23–24, 2022. We received 103 workshop proposals on diverse computer vision topics and unfortunately had to decline many valuable proposals because of space limitations. We strove to achieve a balance between topics, as well as between established and new series. Due to the uncertainty associated with the COVID-19 pandemic around the proposal submission deadline, we allowed two workshop formats: hybrid and purely online. Some proposers switched their preferred format as we drew near the conference dates. The final program included 30 hybrid workshops and 30 purely online workshops. Not all workshops published their papers in the ECCV workshop proceedings, or had papers at all. These volumes collect the edited papers from 38 out of the 60 workshops. We sincerely thank the ECCV general chairs for trusting us with the responsibility for the workshops, the workshop organizers for their hard work in putting together exciting programs, and the workshop presenters and authors for contributing to ECCV.

October 2022

Tomer Michaeli Leonid Karlinsky Ko Nishino

Organization

General Chairs

Rita Cucchiara University of Modena and Reggio Emilia, Italy

Jiří Matas Czech Technical University in Prague,

Czech Republic

Amnon Shashua Hebrew University of Jerusalem, Israel

Lihi Zelnik-Manor Technion – Israel Institute of Technology, Israel

Program Chairs

Shai Avidan Tel-Aviv University, Israel
Gabriel Brostow University College London, UK
Giovanni Maria Farinella University of Catania, Italy

Tal Hassner Facebook AI, USA

Program Technical Chair

Pavel Lifshits Technion – Israel Institute of Technology, Israel

Workshops Chairs

Leonid Karlinsky IBM Research - MIT-IBM Watson AI Lab, USA Tomer Michaeli Technion – Israel Institute of Technology, Israel

Ko Nishino Kyoto University, Japan

Tutorial Chairs

Thomas Pock Graz University of Technology, Austria

Natalia Neverova Facebook AI Research, UK

Demo Chair

Bohyung Han Seoul National University, South Korea

Social and Student Activities Chairs

Tatiana Tommasi Italian Institute of Technology, Italy Sagie Benaim University of Copenhagen, Denmark

Diversity and Inclusion Chairs

Xi Yin Facebook AI Research, USA

Bryan Russell Adobe, USA

Communications Chairs

Lorenzo Baraldi University of Modena and Reggio Emilia, Italy Kosta Derpanis York University and Samsung AI Centre Toronto,

Canada

Industrial Liaison Chairs

Dimosthenis Karatzas Universitat Autònoma de Barcelona, Spain

Chen Sagiv Sagiv Tech, Israel

Finance Chair

Gerard Medioni University of Southern California and Amazon,

USA

Publication Chair

Eric Mortensen MiCROTEC, USA

Workshops Organizers

W01 - AI for Space

Tat-Jun ChinThe University of Adelaide, AustraliaLuca CarloneMassachusetts Institute of Technology, USADjamila AouadaUniversity of Luxembourg, LuxembourgBinfeng PanNorthwestern Polytechnical University, China

Viorela Ila The University of Sydney, Australia Benjamin Morrell NASA Jet Propulsion Lab, USA

Grzegorz Kakareko Spire Global, USA

W02 - Vision for Art

Alessio Del Bue Istituto Italiano di Tecnologia, Italy
Peter Bell Philipps-Universität Marburg, Germany
Leonardo L. Impett École Polytechnique Fédérale de Lausanne

(EPFL), Switzerland

Noa Garcia Osaka University, Japan

Stuart James Istituto Italiano di Tecnologia, Italy

Organization

W03 - Adversarial Robustness in the Real World

Angtian Wang Johns Hopkins University, USA Yutong Bai Johns Hopkins University, USA

Adam Kortylewski Max Planck Institute for Informatics, Germany Cihang Xie University of California, Santa Cruz, USA

Alan Yuille Johns Hopkins University, USA

Xinyun Chen

University of California, Berkeley, USA

Judy Hoffman

Georgia Institute of Technology, USA

Wieland Brendel

University of Tübingen, Germany

Matthias Hein

University of Tübingen, Germany

Tsinghua University, China

Dawn Song University of California, Berkeley, USA

Jun Zhu Tsinghua University, China
Philippe Burlina Johns Hopkins University, USA
Rama Chellappa Johns Hopkins University, USA
Yinpeng Dong Tsinghua University, China
Yingwei Li Johns Hopkins University, USA
Ju He Johns Hopkins University, USA
Alexander Robey University of Pennsylvania, USA

W04 - Autonomous Vehicle Vision

Rui Fan Tongji University, China
Nemanja Djuric Aurora Innovation, USA
Wenshuo Wang McGill University, Canada
Peter Ondruska Toyota Woven Planet, UK
Jie Li Toyota Research Institute, USA

W05 - Learning With Limited and Imperfect Data

Noel C. F. Codella Microsoft, USA

Zsolt Kira Georgia Institute of Technology, USA

Shuai Zheng Cruise LLC, USA

Judy Hoffman Georgia Institute of Technology, USA

Tatiana Tommasi Politecnico di Torino, Italy

Xiaojuan Qi The University of Hong Kong, China

Sadeep Jayasumana University of Oxford, UK

Viraj Prabhu Georgia Institute of Technology, USA Yunhui Guo University of Texas at Dallas, USA

Ming-Ming Cheng Nankai University, China

W06 - Advances in Image Manipulation

Radu Timofte University of Würzburg, Germany, and ETH

Zurich, Switzerland

Andrey Ignatov AI Benchmark and ETH Zurich, Switzerland

Ren Yang ETH Zurich, Switzerland

Marcos V. Conde University of Würzburg, Germany Furkan Kınlı Özyeğin University, Turkey

W07 - Medical Computer Vision

Tal Arbel McGill University, Canada Ayelet Akselrod-Ballin Reichman University, Israel

Vasileios Belagiannis Otto von Guericke University, Germany
Qi Dou The Chinese University of Hong Kong, China

Moti Freiman Technion, Israel

Nicolas Padoy University of Strasbourg, France
Tammy Riklin Raviv Ben Gurion University, Israel
Mathias Unberath Johns Hopkins University, USA

Yuyin Zhou University of California, Santa Cruz, USA

W08 - Computer Vision for Metaverse

Bichen Wu Meta Reality Labs, USA

Peizhao Zhang Facebook, USA
Xiaoliang Dai Facebook, USA
Tao Xu Facebook, USA
Hang Zhang Meta, USA
Péter Vajda Facebook, USA

Fernando de la Torre Carnegie Mellon University, USA

Angela Dai Technical University of Munich, Germany

Bryan Catanzaro NVIDIA, USA

W09 - Self-Supervised Learning: What Is Next?

Yuki M. Asano University of Amsterdam, The Netherlands

Christian Rupprecht University of Oxford, UK
Diane Larlus Naver Labs Europe, France
Andrew Zisserman University of Oxford, UK

W10 - Self-Supervised Learning for Next-Generation Industry-Level Autonomous Driving

Xiaodan Liang Sun Yat-sen University, China Hang Xu Huawei Noah's Ark Lab, China Fisher Yu ETH Zürich, Switzerland Wei Zhang Huawei Noah's Ark Lab, China

Michael C. Kampffmeyer UiT The Arctic University of Norway, Norway

Ping Luo The University of Hong Kong, China

W11 - ISIC Skin Image Analysis

M. Emre Celebi University of Central Arkansas, USA Catarina Barata Instituto Superior Técnico, Portugal

Allan Halpern Memorial Sloan Kettering Cancer Center, USA

Philipp Tschandl Medical University of Vienna, Austria Marc Combalia Hospital Clínic of Barcelona, Spain

Yuan Liu Google Health, USA

W12 - Cross-Modal Human-Robot Interaction

Fengda Zhu Monash University, Australia Yi Zhu Huawei Noah's Ark Lab, China Xiaodan Liang Sun Yat-sen University, China

Liwei Wang The Chinese University of Hong Kong, China Xiaojun Chang University of Technology Sydney, Australia

Nicu Sebe University of Trento, Italy

W13 - Text in Everything

Ron Litman Amazon AI Labs, Israel Aviad Aberdam Amazon AI Labs, Israel Shai Mazor Amazon AI Labs, Israel Hadar Averbuch-Elor Cornell University, USA

Dimosthenis Karatzas Universitat Autònoma de Barcelona, Spain

R. Manmatha Amazon AI Labs, USA

W14 - BioImage Computing

Jan Funke HHMI Janelia Research Campus, USA
Alexander Krull University of Birmingham, UK
Dagmar Kainmueller Max Delbrück Center, Germany
Florian Jug Human Technopole, Italy

Anna Kreshuk EMBL-European Bioinformatics Institute,

Germany

Martin Weigert École Polytechnique Fédérale de Lausanne

(EPFL), Switzerland

Virginie Uhlmann EMBL-European Bioinformatics Institute, UK

Peter Bajcsy National Institute of Standards and Technology,

USA

Erik Meijering University of New South Wales, Australia

W15 - Visual Object-Oriented Learning Meets Interaction: Discovery, Representations, and Applications

Kaichun Mo Stanford University, USA Yanchao Yang Stanford University, USA

Jiayuan Gu University of California, San Diego, USA

Shubham Tulsiani Carnegie Mellon University, USA

Hongjing Lu University of California, Los Angeles, USA

Leonidas Guibas Stanford University, USA

W16 - AI for Creative Video Editing and Understanding

Fabian Caba Adobe Research, USA

Anyi Rao The Chinese University of Hong Kong, China Alejandro Pardo King Abdullah University of Science and

Technology, Saudi Arabia

Linning Xu The Chinese University of Hong Kong, China Yu Xiong The Chinese University of Hong Kong, China

Victor A. Escorcia

Samsung AI Center, UK

Ali Thabet

Reality Labs at Meta, USA

Dong Liu

Netflix Research, USA

Dahua Lin The Chinese University of Hong Kong, China Bernard Ghanem King Abdullah University of Science and

Technology, Saudi Arabia

W17 - Visual Inductive Priors for Data-Efficient Deep Learning

Jan C. van Gemert Delft University of Technology, The Netherlands Nergis Tömen Delft University of Technology, The Netherlands

Ekin Dogus Cubuk Google Brain, USA

Robert-Jan Bruintjes Delft University of Technology, The Netherlands Attila Lengyel Delft University of Technology, The Netherlands

Osman Semih Kayhan Bosch Security Systems, The Netherlands

Marcos Baptista Ríos Alice Biometrics, Spain

Lorenzo Brigato Sapienza University of Rome, Italy

W18 - Mobile Intelligent Photography and Imaging

Chongyi Li Nanyang Technological University, Singapore Shangchen Zhou Nanyang Technological University, Singapore Ruicheng Feng Nanyang Technological University, Singapore

Jun Jiang SenseBrain Research, USA
Wenxiu Sun SenseTime Group Limited, China

Chen Change Loy Nanyang Technological University, Singapore

Jinwei Gu SenseBrain Research, USA

W19 - People Analysis: From Face, Body and Fashion to 3D Virtual Avatars

Alberto Del Bimbo University of Florence, Italy Mohamed Daoudi IMT Nord Europe, France

Roberto Vezzani University of Modena and Reggio Emilia, Italy

Xavier Alameda-Pineda Inria Grenoble, France

Marcella Cornia University of Modena and Reggio Emilia, Italy

Guido Borghi University of Bologna, Italy
Claudio Ferrari University of Parma, Italy
Federico Becattini University of Florence, Italy

Andrea Pilzer NVIDIA AI Technology Center, Italy

Zhiwen Chen Alibaba Group, China

Xiangyu Zhu Chinese Academy of Sciences, China Ye Pan Shanghai Jiao Tong University, China Xiaoming Liu Michigan State University, USA

W20 - Safe Artificial Intelligence for Automated Driving

Timo Saemann Valeo, Germany

Oliver Wasenmüller Hochschule Mannheim, Germany

Markus Enzweiler Esslingen University of Applied Sciences,

Germany

Peter Schlicht CARIAD, Germany

Joachim Sicking Fraunhofer IAIS, Germany

Stefan Milz Spleenlab.ai and Technische Universität Ilmenau,

Germany

Fabian Hüger Volkswagen Group Research, Germany Seyed Ghobadi University of Applied Sciences Mittelhessen,

Germany

Ruby Moritz Volkswagen Group Research, Germany

Oliver Grau Intel Labs, Germany Frédérik Blank Bosch, Germany

Thomas Stauner BMW Group, Germany

W21 - Real-World Surveillance: Applications and Challenges

Kamal Nasrollahi Aalborg University, Denmark

Sergio Escalera Universitat Autònoma de Barcelona, Spain

xvi Organization

Radu Tudor Ionescu University of Bucharest, Romania

Fahad Shahbaz Khan Mohamed bin Zayed University of Artificial

Intelligence, United Arab Emirates

Thomas B. Moeslund Aalborg University, Denmark

Anthony Hoogs Kitware, USA

Shmuel Peleg The Hebrew University, Israel
Mubarak Shah University of Central Florida, USA

W22 - Affective Behavior Analysis In-the-Wild

Dimitrios Kollias Queen Mary University of London, UK

Stefanos Zafeiriou Imperial College London, UK

Elnar Hajiyev Realeyes, UK

Viktoriia Sharmanska University of Sussex, UK

W23 - Visual Perception for Navigation in Human Environments: The JackRabbot Human Body Pose Dataset and Benchmark

Hamid Rezatofighi Monash University, Australia Edward Vendrow Stanford University, USA

Ian Reid University of Adelaide, Australia

Silvio Savarese Stanford University, USA

W24 - Distributed Smart Cameras

Niki Martinel University of Udine, Italy
Ehsan Adeli Stanford University, USA
Rita Pucci University of Udine, Italy
Animashree Anandkumar Caltech and NVIDIA, USA

Caifeng Shan Shandong University of Science and Technology,

China

Yue Gao Tsinghua University, China Christian Micheloni University of Udine, Italy Hamid Aghajan Ghent University, Belgium Li Fei-Fei Stanford University, USA

W25 - Causality in Vision

Yulei Niu Columbia University, USA

Hanwang Zhang Nanyang Technological University, Singapore

Peng Cui Tsinghua University, China

Song-Chun Zhu University of California, Los Angeles, USA
Qianru Sun Singapore Management University, Singapore
Mike Zheng Shou National University of Singapore, Singapore
Kaihua Tang Nanyang Technological University, Singapore

Organization

W26 - In-Vehicle Sensing and Monitorization

Jaime S. Cardoso INESC TEC and Universidade do Porto, Portugal Pedro M. Carvalho INESC TEC and Polytechnic of Porto, Portugal João Ribeiro Pinto Bosch Car Multimedia and Universidade do

Porto, Portugal

Paula Viana INESC TEC and Polytechnic of Porto, Portugal Christer Ahlström Swedish National Road and Transport Research

Institute, Sweden

Carolina Pinto Bosch Car Multimedia, Portugal

W27 - Assistive Computer Vision and Robotics

Marco Leo National Research Council of Italy, Italy

Giovanni Maria Farinella University of Catania, Italy Antonino Furnari University of Catania, Italy

Mohan Trivedi University of California, San Diego, USA

Gérard Medioni Amazon, USA

W28 - Computational Aspects of Deep Learning

Iuri Frosio NVIDIA, Italy

Sophia Shao University of California, Berkeley, USA Lorenzo Baraldi University of Modena and Reggio Emilia, Italy

Claudio Baecchi University of Florence, Italy

Frederic Pariente NVIDIA, France Giuseppe Fiameni NVIDIA, Italy

W29 - Computer Vision for Civil and Infrastructure Engineering

Joakim Bruslund Haurum Aalborg University, Denmark Mingzhu Wang Loughborough University, UK

Ajmal Mian University of Western Australia, Australia

Thomas B. Moeslund Aalborg University, Denmark

W30 - AI-Enabled Medical Image Analysis: Digital Pathology and Radiology/COVID-19

Jaime S. Cardoso INESC TEC and Universidade do Porto, Portugal Stefanos Kollias National Technical University of Athens, Greece

Sara P. Oliveira INESC TEC, Portugal

Mattias Rantalainen Karolinska Institutet, Sweden

Jeroen van der Laak Radboud University Medical Center,

The Netherlands

Cameron Po-Hsuan Chen Google Health, USA

xviii Organization

Diana Felizardo IMP Diagnostics, Portugal
Ana Monteiro IMP Diagnostics, Portugal
Isabel M. Pinto IMP Diagnostics, Portugal
Pedro C. Neto INESC TEC, Portugal
Xujiong Ye University of Lincoln, UK
Luc Bidaut University of Lincoln, UK
Francesco Rundo STMicroelectronics, Italy

Dimitrios Kollias Queen Mary University of London, UK Giuseppe Banna Portsmouth Hospitals University, UK

W31 - Compositional and Multimodal Perception

Kazuki Kozuka Panasonic Corporation, Japan Zelun Luo Stanford University, USA Ehsan Adeli Stanford University, USA Ranjay Krishna University of Washington, USA

Juan Carlos Niebles Salesforce and Stanford University, USA

Li Fei-Fei Stanford University, USA

W32 - Uncertainty Quantification for Computer Vision

Andrea Pilzer NVIDIA, Italy

Martin Trapp Aalto University, Finland Arno Solin Aalto University, Finland Yingzhen Li Imperial College London, UK

Neill D. F. Campbell University of Bath, UK

W33 - Recovering 6D Object Pose

Martin Sundermeyer DLR German Aerospace Center, Germany

Tomáš Hodaň Reality Labs at Meta, USA

Yann Labbé Inria Paris, France

Gu Wang Tsinghua University, China Lingni Ma Reality Labs at Meta, USA

Eric Brachmann Niantic, Germany Bertram Drost MVTec, Germany

Sindi Shkodrani Reality Labs at Meta, USA Rigas Kouskouridas Scape Technologies, UK

Ales Leonardis University of Birmingham, UK

Carsten Steger Technical University of Munich and MVTec,

Germany

Vincent Lepetit École des Ponts Paris Tech, France, and TU Graz,

Austria

Jiří Matas Czech Technical University in Prague,

Czech Republic

W34 - Drawings and Abstract Imagery: Representation and Analysis

Diane Oyen Los Alamos National Laboratory, USA

Kushal Kafle Adobe Research, USA

Michal Kucer Los Alamos National Laboratory, USA

Pradyumna Reddy University College London, UK Cory Scott University of California, Irvine, USA

W35 - Sign Language Understanding

Liliane Momeni University of Oxford, UK

Gül Varol École des Ponts ParisTech, France Hannah Bull University of Paris-Saclay, France

Prajwal K. R. University of Oxford, UK

Neil Fox University College London, UK
Ben Saunders University of Surrey, UK

Necati Cihan Camgöz Meta Reality Labs, Switzerland Richard Bowden University of Surrey, UK Andrew Zisserman University of Oxford, UK

Bencie Woll University College London, UK

Sergio Escalera Universitat Autònoma de Barcelona, Spain

Jose L. Alba-Castro Universidade de Vigo, Spain Thomas B. Moeslund Aalborg University, Denmark

Julio C. S. Jacques Junior Universitat Autònoma de Barcelona, Spain

Manuel Vázquez Enríquez Universidade de Vigo, Spain

W36 - A Challenge for Out-of-Distribution Generalization in Computer Vision

Adam Kortylewski Max Planck Institute for Informatics, Germany

Bingchen Zhao University of Edinburgh, UK

Jiahao Wang Max Planck Institute for Informatics, Germany Shaozuo Yu The Chinese University of Hong Kong, China

Siwei Yang Hong Kong University of Science and

Technology, China

Dan Hendrycks University of California, Berkeley, USA
Oliver Zendel Austrian Institute of Technology, Austria
Dawn Song University of California, Berkeley, USA

Alan Yuille Johns Hopkins University, USA

W37 - Vision With Biased or Scarce Data

Kuan-Chuan Peng Mitsubishi Electric Research Labs, USA Ziyan Wu United Imaging Intelligence, USA

W38 - Visual Object Tracking Challenge

Matej Kristan University of Ljubljana, Slovenia Aleš Leonardis University of Birmingham, UK

Jiří Matas Czech Technical University in Prague,

Czech Republic

Hyung Jin Chang University of Birmingham, UK Joni-Kristian Kämäräinen Tampere University, Finland

Roman Pflugfelder Technical University of Munich, Germany,

Technion, Israel, and Austrian Institute of

Technology, Austria

Luka Čehovin Zajc University of Ljubljana, Slovenia Alan Lukežič University of Ljubljana, Slovenia

Gustavo Fernández Austrian Institute of Technology, Austria

Michael Felsberg Linköping University, Sweden Martin Danelljan ETH Zurich, Switzerland

Contents - Part VII

W28 - Computational Aspects of Deep Learning	
EdgeNeXt: Efficiently Amalgamated CNN-Transformer Architecture for Mobile Vision Applications	3
Muhammad Maaz, Abdelrahman Shaker, Hisham Cholakkal, Salman Khan, Syed Waqas Zamir, Rao Muhammad Anwer, and Fahad Shahbaz Khan	
Continual Inference: A Library for Efficient Online Inference with Deep Neural Networks in PyTorch	21
Lukas Hedegaard and Alexandros Iosifidis	21
Hydra Attention: Efficient Attention with Many Heads	35
BiTAT: Neural Network Binarization with Task-Dependent Aggregated	50
Transformation Geon Park, Jaehong Yoon, Haiyang Zhang, Xing Zhang, Sung Ju Hwang, and Yonina C. Eldar	50
Power Awareness in Low Precision Neural Networks	67
Augmenting Legacy Networks for Flexible Inference	84
Deep Neural Network Compression for Image Inpainting	99
QFT: Post-training Quantization via Fast Joint Finetuning of All Degrees of Freedom	115
Alex Finkelstein, Ella Fuchs, Idan Tal, Mark Grobman, Niv Vosco, and Eldad Meller	113
Searching for N:M Fine-grained Sparsity of Weights and Activations	

Ruth Akiva-Hochman, Shahaf E. Finder, Javier S. Turek,

and Eran Treister

w29 - Computer vision for Civil and Imrastructure Engineering	
Image Illumination Enhancement for Construction Worker Pose Estimation in Low-light Conditions Xinyu Chen and Yantao Yu	147
Towards an Error-free Deep Occupancy Detector for Smart Camera Parking System Tung-Lam Duong, Van-Duc Le, Tien-Cuong Bui, and Hai-Thien To	163
CrackSeg9k: A Collection and Benchmark for Crack Segmentation Datasets and Frameworks Shreyas Kulkarni, Shreyas Singh, Dhananjay Balakrishnan, Siddharth Sharma, Saipraneeth Devunuri, and Sai Chowdeswara Rao Korlapati	179
PriSeg: IFC-Supported Primitive Instance Geometry Segmentation with Unsupervised Clustering	196
Depth Contrast: Self-supervised Pretraining on 3DPM Images for Mining Material Classification Prakash Chandra Chhipa, Richa Upadhyay, Rajkumar Saini, Lars Lindqvist, Richard Nordenskjold, Seiichi Uchida, and Marcus Liwicki	212
Facilitating Construction Scene Understanding Knowledge Sharing and Reuse via Lifelong Site Object Detection	228
Model-Assisted Labeling via Explainability for Visual Inspection of Civil Infrastructures Klara Janouskova, Mattia Rigotti, Ioana Giurgiu, and Cristiano Malossi	244
A Hyperspectral and RGB Dataset for Building Façade Segmentation Nariman Habili, Ernest Kwan, Weihao Li, Christfried Webers, Jeremy Oorloff, Mohammad Ali Armin, and Lars Petersson	258
Improving Object Detection in VHR Aerial Orthomosaics Tanguy Ophoff, Kristof Van Beeck, and Toon Goedemé	268
Active Learning for Imbalanced Civil Infrastructure Data	283

Kushagra Srivastava, Dhruv Patel, Aditya Kumar Jha, Mohhit Kumar Jha, Jaskirat Singh, Ravi Kiran Sarvadevabhatla, Pradeep Kumar Ramancharla, Harikumar Kandath, and K. Madhava Krishna	299
ConSLAM: Periodically Collected Real-World Construction Dataset for SLAM and Progress Monitoring Maciej Trzeciak, Kacper Pluta, Yasmin Fathy, Lucio Alcalde, Stanley Chee, Antony Bromley, Ioannis Brilakis, and Pierre Alliez	317
NeuralSI: Structural Parameter Identification in Nonlinear Dynamical Systems	332
Xuyang Li, Hamed Bolandi, Talal Salem, Nizar Lajnef, and Vishnu Naresh Boddeti	332
A Geometric-Relational Deep Learning Framework for BIM Object	
Classification Hairong Luo, Ge Gao, Han Huang, Ziyi Ke, Cheng Peng, and Ming Gu	349
Generating Construction Safety Observations via CLIP-Based Image-Language Embedding	366
W20 At Euchlad Medical Image Analysis, Picital Pathalogy and	
W30 - AI-Enabled Medical Image Analysis: Digital Pathology and Radiology/COVID-19	
Radiology/COVID-19 Harmonization of Diffusion MRI Data Obtained with Multiple Head Coils	
Radiology/COVID-19	385
Radiology/COVID-19 Harmonization of Diffusion MRI Data Obtained with Multiple Head Coils Using Hybrid CNNs Leon Weninger, Sandro Romanzetti, Julia Ebert, Kathrin Reetz,	
Radiology/COVID-19 Harmonization of Diffusion MRI Data Obtained with Multiple Head Coils Using Hybrid CNNs Leon Weninger, Sandro Romanzetti, Julia Ebert, Kathrin Reetz, and Dorit Merhof CCRL: Contrastive Cell Representation Learning Ramin Nakhli, Amirali Darbandsari, Hossein Farahani,	

Contrastive Learning for Melanoma Concordance Regression	442
Explainable Model for Localization of Spiculation in Lung Nodules	457
Self-supervised Pretraining for 2D Medical Image Segmentation	472
CMC_v2: Towards More Accurate COVID-19 Detection with Discriminative Video Priors Junlin Hou, Jilan Xu, Nan Zhang, Yi Wang, Yuejie Zhang, Xiaobo Zhang, and Rui Feng	485
COVID Detection and Severity Prediction with 3D-ConvNeXt and Custom Pretrainings Daniel Kienzle, Julian Lorenz, Robin Schön, Katja Ludwig, and Rainer Lienhart	500
Two-Stage COVID19 Classification Using BERT Features	517
PVT-COV19D: COVID-19 Detection Through Medical Image Classification Based on Pyramid Vision Transformer Lilang Zheng, Jiaxuan Fang, Xiaorun Tang, Hanzhang Li, Jiaxin Fan, Tianyi Wang, Rui Zhou, and Zhaoyan Yan	526
Boosting COVID-19 Severity Detection with Infection-Aware Contrastive Mixup Classification Junlin Hou, Jilan Xu, Nan Zhang, Yuejie Zhang, Xiaobo Zhang, and Rui Feng	537
Variability Matters: Evaluating Inter-Rater Variability in Histopathology for Robust Cell Detection	552
FUSION: Fully Unsupervised Test-Time Stain Adaptation via Fused Normalization Statistics Nilanjan Chattopadhyay, Shiv Gehlot, and Nitin Singhal	566
Relieving Pixel-Wise Labeling Effort for Pathology Image Segmentation with Self-training	577

CNR-IEMN-CD and CNR-IEMN-CSD Approaches for Covid-19	
Detection and Covid-19 Severity Detection from 3D CT-scans	593
and Abdelmalik Taleb-Ahmed	
Representation Learning with Information Theory to Detect COVID-19	
and Its Severity	605
Abel Díaz Berenguer, Tanmoy Mukherjee, Yifei Da, Matías Nicolás Bossa, Maryna Kvasnytsia, Jef Vandemeulebroucke,	
Nikos Deligiannis, and Hichem Sahli	
Spatial-Slice Feature Learning Using Visual Transformer and Essential	
Slices Selection Module for COVID-19 Detection of CT Scans in the Wild	621
Chih-Chung Hsu, Chi-Han Tsai, Guan-Lin Chen, Sin-Di Ma, and Shen-Chieh Tai	
Multi-scale Attention-Based Multiple Instance Learning for Classification	
of Multi-gigapixel Histology Images	635
Made Satria Wibawa, Kwok-Wai Lo, Lawrence S. Young, and Nasir Rajpoot	
A Deep Wavelet Network for High-Resolution Microscopy Hyperspectral	
Image Reconstruction	648
Using a 3D ResNet for Detecting the Presence and Severity of COVID-19	
from CT Scans	663
AI-MIA: COVID-19 Detection and Severity Analysis Through Medical	
Imaging Dimitrios Kollias, Anastasios Arsenos, and Stefanos Kollias	677
Medical Image Segmentation: A Review of Modern Architectures	691
Natalia Salpea, Paraskevi Tzouveli, and Dimitrios Kollias	
Medical Image Super Resolution by Preserving Interpretable	= 00
and Disentangled Features Dwarikanath Mahapatra, Behzad Bozorgtabar, and Mauricio Reyes	709
Multi-label Attention Map Assisted Deep Feature Learning for Medical	
Image Classification	722
2	

xxvi Contents - Part VII

Unsupervised Domain Adaptation Using Feature Disentanglement	
and GCNs for Medical Image Classification	735
Dwarikanath Mahapatra, Steven Korevaar, Behzad Bozorgtabar,	
and Ruwan Tennakoon	
Author Index	749