République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche scientifique

Université des Sciences et de la Technologie Houari Boumediene Faculté d'informatique

Département d'intelligence artificielle et science des donnés IASD

Mémoire de Master

Spécialité : Informatique Visuelle

Thème:

Reconnaissance des séquences répétées dans un flux vidéo : cas de la publicité télévisée

Réalisé par :

AIT TAFATI Abderrahmane OUSSADI Yacine

Encadré par :

Devant le jury :

AMRANE Abdesslam ATIK Ali Présidente : Laiche Nacera Membre : Belhadi Hiba

Num Projet: MIV_14

REMERCIMENTS

Nous tenons à exprimer notre sincère gratitude et appréciation à nos encadreurs monsieur **Amrane Abdesslam** et monsieur **Atik Ali** pour leur patience, leur disponibilité et leur conseils qui nous aidé à réaliser nôtre mémoire.

Nous remercions également les membres du jury madame Laiche Nacera et madame Belhadi Hiba d'avoir bien voulu accepter d'examiner notre travail et d'apporter leur expertise pour l'enrichissement future de nos travaux.

Enfin, nous adressons nos remerciements les plus sincères à toute personne ayant contribué de près ou de loin à l'aboutissement de ce projet.

Résumé

Français

Dans le processus de veille concurrentielle pour les acteurs économiques et sociaux, l'identification des passages publicitaires dans les flux vidéo est une tâche très importante. La plupart des travaux proposés exploitent des méthodes d'apprentissage supervisé. Ces méthodes ne sont pas scalable avec la haut fréquence d'apparition de nouvelles publicités. De ce fait, notre travail propose la conception d'un modèle hybride exploitant les méthodes supervisées et non supervisées. Ceci ayant pour but une meilleur scalabilité dans l'identification des publicités dans les flux vidéo.

Mots clés: Apprentissage automatique, apprentissage supervisé, apprentissage non supervisé, détection d'outliers.

English

Automatically identifying commercial segments in video streams is an important task for competitive intelligence in the marketing and social field. Most of the proposed solutions utilise supervised learning methods that are not scalable considering the high frequency of new commercial releases. To ensure a better scalability in indentifying commercials in video streams, we propose a hybrid model utilising both supervised and unsupervised learning methods.

Key words: Machine learning, supervised learning, unsupervised learning, outlier detection.

Table des matières iii

Table des matières

Rέ	ésumé			i
Та	ble d	es mati	ères	iii
Ta	ble d	es figur	es	vii
Lis	ste de	es table	aux	ix
Lis	ste de	es abrév	riations	xi
Pr	ésent	ation d	e l'organisme \dots x	iii
In	trodu	ction ge	énérale	ΧV
1	État	de l'ar	t	1
	1.1	Introd	luction	1
	1.2	Histor	ique de la détection publicitaire	1
		1.2.1	Travaux fondateurs	1
		1.2.2	Utilisation de l'IA	2
	1.3	Vision	par ordinateur	4
		1.3.1	Définition	4
		1.3.2	Applications modernes	5
	1.4	Génér	alités sur la vidéo numérique :	7
	1.5	Analy	se vidéo	8
		1.5.1	Définition	8
		1.5.2	L'extraction de caractéristique visuelles :	8
		1.5.3	L'extraction des caractéristiques audio :	9
		1.5.4	Interprétation des résultats	12
		1.5.5	Domaines d'applications modernes	12
	1.6	Conclu	usion	12
2	Tech	niques	nécessaires à la conception	13
	2.1	Introd	luction	13
	2.2	Appre	entissage automatique	13
	2.3	Appre	entissage profond (Deep Learning):	14
	2.4	Modèl	e d'apprentissage automatique	14
		2.4.1	Phase d'apprentissage ou entraînement :	15
		2.4.2	Phase d'évaluation ou test :	15

iv Table des matières

		2.4.3	Optimiseurs:
	2.5	Réseau	ux de neurones artificiels
		2.5.1	Définition
		2.5.2	Fonctionnement d'un réseau de neurones artificiel 17
		2.5.3	Les fonctions d'activation
		2.5.4	Les fonctions de perte :
		2.5.5	Réseaux de neurones convolutifs (CNN):
		2.5.6	Les réseau de neurones récurrents RNN :
		2.5.7	Les réseau de neurones convolutifs récurrents CRNN : 25
	2.6	Algoria	thmes de clustering
	2.7	Histog	rammes de couleurs
	2.8	Descri	pteur SIFT
	2.9	Détect	ion automatique de transitions de plan vidéo 29
	2.10	La dét	ection d'activité vocale VAD (voice activity detection) 30
	2.11	La dét	ection automatique de musique
	2.12	Conclu	sion
3	Cond	ception	33
	3.1	Introd	$uction \dots \dots$
	3.2	Exposi	tion de la problématique
	3.3	Présen	tation de notre solution
		3.3.1	Caractéristiques choisies
		3.3.2	Détection des caractéristiques audio
		3.3.3	Vue d'ensemble de la solution
	3.4	Appro	che de classification finale
		3.4.1	Classificateur basé-clustering
		3.4.2	Classificateur basé-règles
	3.5	Conclu	sion
4	Impl	émenta	tion, Tests et Évaluation:
	4.1	Introd	uction: $\dots \dots \dots$
	4.2	Outils	logiciels utilisés :
		4.2.1	Langage de programmation :
		4.2.2	Environnement de développement et plateformes :
		4.2.3	Bibliothèques utilisées :
	4.3	Outils	Materiels
	4.4	Présen	tation de notre ensemble de donnés 47
	4.5	Calcul	des seuils
		4.5.1	Seuil du nombre de plans
		4.5.2	Seuil des caractéristiques audio
	4.6	Détect	ion de plans

Table des matières v

4.7	7 Détection des voix/paroles					49	
4.8	Évalua	tion de la solution					50
	4.8.1	Classificateur à clustering					50
	4.8.2	Classificateur à base de règles					51
4.9	Discus	sion des résultats					51
4.10	Conclu	ısion					52
Bibliogr	aphie						55